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Multistage Models of Carcinogenesis
by P. Armitage*

The simple multistage model of carcinogenesis is outlined. It provides a satisfactory explanation of the
power law for the age incidence ofmany forms of epithelial carcinoma, for the effects in human populations
of changing exposures to supposed carcinogenic agents, and for many of the observed effects of applied
carcinogens in animal experiments. In particular, the evidence on the effects of starting and stopping
cigarette smoking suggests that both an early and a late stage may be affected. In the absence of direct
evidence on the nature of the cellular changes there is some reluctance to accept a model with more than
two stages, and several forms of two-stage models provide good general explanations of observed phenom-
ena. Such a model has recently been applied to breast cancer; another approach to this disease, effectively
involving transformations of the time scale, is discussed.

Introduction
Multistage and related models of carcinogenesis have

been discussed for about 30 years, and the growth in
the literature has been almost as rapid as the rise of
cancer incidence with age. In a short paper I cannot
attempt a comprehensive review, and I shall aim to
outline the topic in a general way, making more specific
comments about some of the points which happen to
have interested me over this period. More comprehen-
sive reviews of the mathematical theory have been
given by Armitage and Doll (1), Whittemore (2), Whitte-
more and Keller (3), and Peto (4) has provided a stim-
ulating general review.

Early Work
The flurry of work in the early 1950s, which led to

the formulation of a number of related models, was
probably motivated by evidence from various sources.
First, there was the epidemiological evidence that the
mortality or incidence rates for many forms of human
cancer increased rapidly with age. This might be a gen-
eral effect of aging, the body becoming more susceptible
to insults of various sorts, or it might be because car-
cinogenesis is a complex process requiring time and per-
haps involving several qualitatively different stages.
There were two considerations favoring the second ex-
planation: the fact that people exposed to a high but
short-lived carcinogenic risk (for example from irradia-
tion or industrial hazards) often acquire cancer after a
long period of time; and animal experiments such as
those of Berenblum and Shubik (5) showed that some
chemicals are especially effective either early or late in
the induction process (the present terms for these being
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"initiators" and "promoters"), suggesting that qualita-
tively different processes were at work during the early
and late phases. I shall discuss later some more recent
work on the distinction between age per se and duration
of exposure to carcinogens.

In the reviews mentioned earlier, fuller descriptions
of some of the early models are given than can be pre-
sented here. They include the "multicell" theory of
Fisher and Holloman (6) (requiring a mutationlike
change to a specific number of neighboring cells in a
tissue, and inconsistent with the unicellular nature of
most tumors); and the "multistage" or "multihit" models
of Stocks (7) and Nordling (8) (in which a specific number
of changes in any order are required). The very similar
model of Armitage and Doll (9) introduced the idea of
a specific ordering of the changes, so as to accommodate
the evidence from initiation-promotion experiments
and also a number of features of the epidemiology of
human cancer. There was also a series of papers by
Iverson and Arley, starting with one (10) which pos-
tulated a randomly occurring initiating event followed
by a randomly distributed induction period. This rather
general formulation encompasses most of the other
models, since in a multistage model the first stage can
be taken as the initiating event while all subsequent
events are subsumed into the induction period (1).

Derivation of the Basic Model
It will be useful to outline the theory of the Armitage-

Doll model in slightly different terms to those of the
original paper.

Suppose that, in a particular tissue, there are N cells
(or cell lines, if they divide) that can potentially expe-
rience carcinogenic transformation. The final develop-
ment of cancer is the k-th and last of a series of sudden
and irreversible changes (or stages) which must take
place in a specific order. The clinical detection of the



P. ARMITAGE

disease may be delayed by the period required for the
tumor to grow to a detectable size: we shall assume that
this is a relatively short lag and shall not consider it in
any detail. (Many writers systematically replace the
current time t by t - w, where w is the assumed lag.)

Suppose that, for any cell which has experienced i- 1
changes [which we shall call an (i - 1)-cell], the event
rate for next change is Xi, independent of time. That is
the probability that the i-th change takes place in (t,
t + dt) is Xidt + o(dt). This defines a time-homogeneous
birth process. We should like to know fit), the event
rate for the k-th change at time t (the process starting
at time 0).

General and particular solutions for this problem are
well-known (11-14) but are algebraically cumbersome.
Fortunately, an approximation is adequate for almost
all purposes. Consider the position for values of t small
enough to make the probabilities of any of the changes
in (O,t), in any one cell, very small. We can either take
the limit of the general expression as t -O 0 (13,14), or
use a straightforward argument (9) to show that

f(t) - X1X2...k tk-1 (1)
(k - 1)!

The cumulative probability, F(t), that the k-th change
has taken place by time t is

t ~X1X2 ...Xktk
F(t) = If(u)du k! (2)

Clearly, Eq. (2) cannot hold indefinitely as t increases.
However, in most cases lifetime values of t will still be
sufficiently small for the limiting assumption (which con-
cerns single cells) to be adequate.
For the particular tissue withN cells, the probability

that cancer (i.e., the k-th change) has not appeared by
time t is

1 - G(t) = {1 - F(t)}N

{1 _ A1A2 ..

Ak tk)

- exp -
X1X2.... kNtk}

k!
tk

= exp { k (3)

Thus, the distribution function G(t) for the time to ap-
pearance of the first cancer is a Weibull distribution,
with a density function

g(t) = G'(t) = atkl- exp {- (aIk)tk}

and hazard function

h(t) = g(t)/{l - G(t)} = ote-1 (4)

We have here the familiar power law. The limiting
approximation on which it depends seems reasonably
secure, since it assumes small rates per cell, but Mool-
gavkar (15) has pointed out that, for some values of the
parameters which are plausible for human cancer, it
may appreciably overestimate the hazard to be expected
at high ages.

Human Cancer
The age-specific mortality rates for cancers at a par-

ticular site, or more directly the age-specific incidence
rates obtained from cancer registries, can be regarded
as roughly analogous to the hazard functions described
mathematically by Eq. (4), since the denominators of
the rates are the numbers of people alive at the ages in
question. From Eq. (4),

log h(t) = log a + (k - 1) log t (5)

and this linear log-log relation has been widely observed
for a wide range of sites and human populations (16,1 7).
It seems to be the usual finding in most epithelial car-
cinomas, but a variety of quite different relationships
is seen for many nonepithelial tumours and for epithelial
tumours at sex-specific sites (4). The slope in Eq. (5) is
commonly in the range four to six, suggesting there
may be around five to seven discrete stages.

However, there are several reasons for caution. In
the first place, several other diseases show rapidly in-
creasing age-incidence curves, and one would not seek
to explain them all by models of this sort. Secondly, a
power law, with a slope of k-i, or something very close
to it, could be obtained with fewer than k stages. Sup-
pose some of the stages had rates increasing as powers
of the time elapsing since the previous stage. Then the
slope k - 1 would be the sum of the (power + 1) for all
stages before the last plus the power for the last; for
instance, k - 1 = 4 would arise from five constant rates,
or two linearly increasing rates followed by a constant
rate, or a quadratic rate followed by a linear rate. A
reductio ad absurdum is to postulate one state with
A°toc-; the model then becomes purely tautological.
Two-stage models are discussed below.
Third, a similar effect (of a high slope with a small

number of stages) will be obtained if one or more of the
event rates increases with age (rather than with time
since last event).

Fourth, the Weibull hazard, Eq. (4), can be obtained
more generally, on the argument (18) that the time to
first tumor in a tissue is the minimum of N random
variables (the time to tumor in the N cells), and that
Eq. (4) is a standard limit of the distribution of minima
in large samples. However, for this limiting form to be
valid there are restrictions on the shape of the extreme
left-hand tails of the distributions of the cell-specific
times, namely, that they are power functions like Eq.
(1), and this might be taken to provide at least weak
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support for the multistage theory.
Confidence in a multistage model must clearly depend

on wider considerations than the power law. In partic-
ular, we need to consider the effects of external carcin-
ogenic agents, data from animal experiments, and bi-
ological plausibility. These and other topics are taken
up in later sections of the paper.
As already noted, the cancers of sex-specific organs

tend not to follow the power law. This is understandable
since many of these organs are subject to changes in
their hormone dependence at various periods through-
out life or, like the uterine cervix, are affected by
changes in sexual habits. Some tentative explanations
of age-incidence can often be given in qualitative terms
(9). Some recent quantitative modeling for breast can-
cer, in terms of a two-stage model is discussed in a later
section.

Animal Experiments and the Effects
of Applied Carcinogens

In experiments in which animals receive continuous
application of a carcinogenic agent, the time to first
tumor commonly follows a distribution close to the
Weinbull (19,20). Such experiments not only provide a
measure of support for the general theory, but also
enable one to study the dose-response relationship. In
the simple multistage model, suppose that m of the k
stages are affected by the carcinogen, so that, for these
values of i, Xi = d\oi, where d is dose intensity. Then,
from Eq. (4) and the definition of a in Eq. (3), the hazard
function should be proportional to dm. It is common to
find m < k, suggesting that some but not all of the
stages are affected by a particular carcinogen.

Carcinogenic agents may, of course, not be applied
at constant rates, and the question arises how the haz-
ard function h(t) is affected if a particular rate constant,
say Xi, is an arbitrary function of time Xi(t), which in
the simplest case might be proportional to the dose in-
tensity of d(t) of an applied carcinogen. The answer (9)
is that h(t) is proportional to a weighted mean of At(t)
in (O,t), the weight at time T (0 < T < t) being propor-
tional to Ti-(t - T)k-i-1. This means that, for small val-
ues of i (early stages affected), what matters is the value
of Xi(T) at low , whereas for high values of i (say k or
k - 1) the more recent values of Xi(T) carry most weight.
These effects are explored more fully by Whittemore
and Keller (3) and by Day and Brown (21).

In this context one could broadly explain an initiator-
promoter experiment by saying that the initiator affects
primarily the first step and the promoter primarily a
later step (perhaps the second of two). However, Sten-
back et al. (22-24) have shown that the interpretation
of these experiments may be complicated by aging and
other effects. Earlier, Peto et al. (25) had carried out
some experiments with regular benzpyrene applications
to mice, which showed that under these circumstances
the incidence oftumors depended on the time since start
of exposure and not on age. This result is consistent

with the view that the first stage is affected and that
its enhanced event rate in the presence of benzpyrene
is much greater than the natural background rate. Thus,
whether or not it also affects some late stage(s),
benzpyrene appears at least to "initiate" the first stage.
In contrast with the age-independent effect of an ini-
tiator, however, Stenback et al., in experiments similar
to (but much longer than) those of Berenblum and Shu-
bik (5), found that the "promoting" effect of a TPA
declined with age, suggesting a systemic aging effect
in the response to TPA. Finally, to illustrate that the
opposite effect is possible, Gray et al. (26) in experi-
ments on radon inhalation by rats, found the incidence
at a fixed time after start of exposure to increase with
age. This is what might be expected if radon affected
the second or a later stage, since with increasing age
at start of exposure there would be more cells that had
already undergone one or more of the early stages spon-
taneously. We return to the question of age effects in
the next section.

Human Data and Exposure to
Carcinogens
The considerations outlined in the first two para-

graphs of the section titled "Animal experiments and
the effects of applied carcinogens" would be expected
to apply to human exposures as well as to animal ex-
periments. One of the most illuminating examples is
provided by the effects of starting and stopping smoking
at different ages (4, 27-29).
Data from prospective studies, such as the British

and American data analyzed by Doll (16), show that
nonsmokers have a log-log relationship for lung cancer
with a slope k - 1 of about four. For cigarette smokers,
the same slope is obtained if time is measured not from
birth but from the start of smoking. This is reasonable
if smoking enhances one or more of the ki to such high
levels that the naturally occurring changes are very
much less frequent than those induced by smoking.

Consider now the effect of stopping smoking. Smok-
ers who stop retain their high rates, but at a constant
level, perhaps until the nonsmokers' rates rise to that
level. This is precisely what would be expected if smok-
ing affected the (k - 1)th of k stages, for there would
be a pool of ex-smokers with (k - 1)-cells, waiting for
the final change which would occur at a constant rate.
In due course, the pool will be augmented by naturally
occurring (k - 1)-cells and the rate will start to rise.

Consider, secondly, the incidence rate at a fixed time
after start of smoking, as a function of age at starting.
The data are sparse but seem to indicate either little
effect of age at starting or at most a rather modest
positive effect. This would be consistent with an early
stage being affected; (if the first stage were affected so
that Xl, were increased dramatically by smoking, the
process would effectively start at that point, but if the
second stage were affected the number of 1-cells avail-
able for further transformation would increase approx-
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imately linearly with age at starting). Moreover, gen-
eral considerations about the delay in the effect on a
population of a marked increase in smoking suggest that
an early stage is affected.

Thus, different arguments support effects on both
early and late stages. Both effects could, of course, be
present. Some skin-painting experiments with benzpyr-
ene on mice (19) have suggested an incidence propor-
tional to (dose)2, in turn suggesting that two stages are
affected by benzpyrene or that there is one stage with
a quadratic effect. A preliminary analysis by Whitte-
more and Altshuler (30) of the study on British doctors
(31) suggested that the incidence rate was proportional
to the number of cigarettes, which provisionally implied
that one state was affected proportionally to dose, i.e.,
that m = 1. However, an analysis (32) of a "reliable"
subset of the doctors' data suggests a response more
than proportional to dose; the estimate of m may be
reduced by errors of measurement of smoking habits;
and the effect of smoking on a particular Xi may be less
than proportional to the daily consumption of cigarettes.
The evidence thus points, somewhat loosely, toward the
involvement of two stages.
A useful discussion of the effects of removal of car-

cinogenic exposure in a range of human cancers, as well
as in animal experiments, is given by Day and Brown
(21).
The concept that a carcinogen may affect only some

of the rate constants helps us to understand some of the
observed interactions between different carcinogens. In
some instances, as in the interaction between smoking
and asbestos exposure (33), the effects ofthe two agents
appear to be multiplicative. This would be expected if
they acted, with proportionate effects on the rate con-
stants, for two different stages, say the i-th and j-th,
since the hazard function, Eq. (4), involves the product
XiXj. On the other hand, if both agents affect the same
rate constant Xi, their effects could well be additive.

Two-Stage Models: Breast Cancer
In the absence of direct biological evidence about a

succession of stages, models with several (five to seven)
stages have often been regarded as implausible. A two-
stage model with exponential proliferation of the 1-cells
has been discussed (34). The exponential growth in the
rate constant for the second stage has much the same
effect as a low-order polynomial and it is not surprising
that the two-stage model with proliferation mimics
fairly closely the multistage model with constant rates.
Other two-stage models are detailed elsewhere (35-37).
Moolgavkar and Venzon have studied a generalization

of the model (39) permitting growth also of the 0-cells
and have been able to fit data for a wide range of human
cancers. The model has been adapted for breast cancer
by Moolgavkar, Day, and Stevens (40) who postulate
growth in the rate constant for the first initiation during
puberty (with menarche following a logistic curve), sub-
sequent proliferation of 1-cells with an enhanced rate
during pregnancy, a reduced rate after menopause, and

a protective effect of first birth by a subsequent reduc-
tion in 1-cell proliferation. They provide extremely im-
pressive fits to data.

Pike and his colleagues (41,42) have obtained equally
impressive fits with a model conceptually different from,
but very similar in its consequences, to that of Mool-
gavkar et al. Pike et al. adopt a power law with an index
k - 1 of 4.5, but assume that "time" (as used in the
formula) is effectively expanded or contracted during a
woman's life. Exposure starts at menarche (for which
again a logistic curve is assumed), "time" moves more
rapidly during reproductive life, with a temporary spurt
during pregnancy, a fall after the first birth and a fur-
ther fall after menopause. These authors suggest that
the constancy of breast cancer rates in postmenopausal
Japanese women (in contrast to the rise in other pop-
ulation groups) may be an effect of their low weights
and low estrogen levels. The changes in the rate of
passage of "time"are equivalent, in the simple multis-
tage model, to the multiplication of all the rate constants
by some factor varying throughout a woman's life, and
may be motivated by the view that the rate constants
depend on the rate of metabolism of stem cells, which
may vary in the way indicated. It would, of course, be
a rather strong assumption that all the rate constants
should remain in the same ratios to each other although
varying greatly with time.

Low-Dose Extrapolation
Considerable interest has been expressed in recent

years in the assessment of low-dose carcinogenicity on
the basis of extrapolation toward zero dose from the
results of animal experiments in which high doses of
test substances are used (43). Setting aside the impor-
tant questions of the extrapolation from laboratory an-
imal to man, there are serious problems about down-
ward extrapolation within one animal species. The
results depend heavily on the assumed nature of the
dose-response curve at very low doses (44-47).
One plausible and helpful assumption is, however,

suggested by many multistage models. Suppose, as be-
fore, thatm stages are affected by the carcinogen. Since
we are dealing with very low doses it will be inappro-
priate to assume the Xi to be proportional to the dose-
intensity d, because there may well be background ef-
fects, but a linear relation seems reasonable. At fixed
t, therefore, from Eq. (3), the cumulative incidence at
dose d will be

P(d) = 1 - exp {-Hf (oi + Pid)} (6)

where the parameters ai and Pi? absorb the constants
and terms involving t in Eq. (3). A slight generalization
of Eq. (6) is to write

P(d) = 1 - exp {

m

EOidt
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where all the Oi are nonnegative, and this model has
been studied in detail (48-51). In Eq. (7), if 01 > 0, the
response curve is essentially linear at low doses. This
restriction will give more "conservative" assessments
(i.e., a given excess risk will be reached at lower doses)
than most or all other models proposed. Now, a maxi-
mum likelihood estimate (50) of 01 may be 0, in which
case a steeper curve will be fitted at low doses; however,
some nonzero value of 01 will always be consistent with
the data, and so linear extrapolation can scarcely be
excluded as a reasonable procedure.
Other models have been proposed. Hartley and

Sielken (52,53) generalize Eq. (7) to include time. Corn-
field and his associates (54-56) have studied a multihit
model (i.e., one involving hits occurring in an arbitrary
order), which, with certain assumptions about back-
ground effects, has similar consequences to Eq. (6).
However, Van Ryzin (57) points out that the low-dose
linearity of Eq. (6) depends essentially on the assump-
tion that the Xi are asymptotically linear in d. This lin-
earity would follow if the background incidence were
due to a carcinogenic agent, the dose of which combined
additively with the applied dose. This need not be true.

Biological Evidence and
Conclusions

In the construction of mathematical models for bio-
logical phenomena it is not uncommon to find that the-
ories of quite disparate types provide good fits to the
same data. Discrimination between models must then
depend partly on general biological plausibility and
partly on the ability of the models to explain new data.

This is essentially the position with our present topic.
As a statistician I can offer no authoritative guide to
biological mechanisms. There seems little doubt,
though, that the multistage theory, in some form or
another, has provided a useful framework for hypoth-
esis formation and for the design of observational and
experimental studies. A number of experimental biol-
ogists maintain that carcinogenesis is a multistage pro-
cess (the term 'multistep' is often used) (58,59), with
perhaps an initial mutationlike stage of initiation being
followed by one or more steps of a different nature (such
as the activation of an oncogene). Evans and DiPaolo
(60,61) have identified a number of specific stages in the
progression of guinea pig fetal cells to neoplasia, such
as morphological transformation, anchorage-independ-
ent growth, colony forming in agar, etc.

Until and unless we obtain direct evidence about the
presence and nature of intermediate stages, any statis-
tical theory is likely to remain largely unfalsifiable, par-
ticularly if it is allowed to be modified with the flexibility
to which we have become accustomed.
The main contenders for generally applicable theories

seem to be (a) the multistage theory, (b) some form of
two-stage theory, and (c) the time-transformation the-
ory of Pike and his colleagues. Until we have clear evi-
dence for more than two states, it seems best to regard

the multistage theory, like the dogmas of certain reli-
gions, as permitting either a literal or a figurative inter-
pretation. That is, one can either assume that there
really are k > 2 separate stages or one can regard some
of the intermediate stages as being fictional shorthand
for a single proliferative stage. There does seem a need
to preserve at least two stages, so that we can distin-
guish between "early" and "late" effects of carcinogens.
The explicit two-stage models, with appropriate as-

sumptions about proliferation, seem to explain many of
the known facts. However, the observations on the ef-
fects of starting and stopping smoking, described above,
suggest that at least three stages are involved for lung
cancer (two affected by smoking and a final stage).
Moreover, the multiplicativity of the effects of asbestos
and radiation with that of smoking suggests at least a
third stage. In any proliferative model, the precise na-
ture of the proliferative parts of the process is likely to
remain indeterminate until and unless direct biological
observations become available.
The time-transformation model is relatively new and

its full consequences have not, as far as I know, been
explored. In one sense, it avoids some of the assump-
tions of the other models, in that the power law can be
invoked as an empirical observation without any ref-
erence to stages. On the other hand, the particular way
in which the response function is modified by changing
circumstances (which we have seen would be equivalent
to changing the rate for each of a number of stages by
the same multiple) seems more specific than is required
by other models, and it is unclear whether the model
provides a suitable explanation for initiator-promoter
data or other data in which an early or a late effect in
indicated.

In many areas of biomathematics the ingenuity of the
mathematician often seems to run ahead of the ability
of the biological scientist to provide the data needed to
validate the mathematical models. In the study of car-
cinogenesis it is encouraging to see, to an increasing
extent, the close cooperation between mathematicians
and statisticians on the one hand, and biologists on the
other, and I believe that in this sort of collaboration lies
the key to the solution of some of the problems I have
discussed in this paper.

I am grateful to Mr. Richard Peto for helpful comments on the first
draft of this paper.
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